skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spallarossa, Daniele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present initial findings from the ongoing Community Stress Drop Validation Study to compare spectral stress-drop estimates for earthquakes in the 2019 Ridgecrest, California, sequence. This study uses a unified dataset to independently estimate earthquake source parameters through various methods. Stress drop, which denotes the change in average shear stress along a fault during earthquake rupture, is a critical parameter in earthquake science, impacting ground motion, rupture simulation, and source physics. Spectral stress drop is commonly derived by fitting the amplitude-spectrum shape, but estimates can vary substantially across studies for individual earthquakes. Sponsored jointly by the U.S. Geological Survey and the Statewide (previously, Southern) California Earthquake Center our community study aims to elucidate sources of variability and uncertainty in earthquake spectral stress-drop estimates through quantitative comparison of submitted results from independent analyses. The dataset includes nearly 13,000 earthquakes ranging from M 1 to 7 during a two-week period of the 2019 Ridgecrest sequence, recorded within a 1° radius. In this article, we report on 56 unique submissions received from 20 different groups, detailing spectral corner frequencies (or source durations), moment magnitudes, and estimated spectral stress drops. Methods employed encompass spectral ratio analysis, spectral decomposition and inversion, finite-fault modeling, ground-motion-based approaches, and combined methods. Initial analysis reveals significant scatter across submitted spectral stress drops spanning over six orders of magnitude. However, we can identify between-method trends and offsets within the data to mitigate this variability. Averaging submissions for a prioritized subset of 56 events shows reduced variability of spectral stress drop, indicating overall consistency in recovered spectral stress-drop values. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026
  2. Abstract The protracted nature of the 2016-2017 central Italy seismic sequence, with multiple damaging earthquakes spaced over months, presented serious challenges for the duty seismologists and emergency managers as they assimilated the growing sequence to advise the local population. Uncertainty concerning where and when it was safe to occupy vulnerable structures highlighted the need for timely delivery of scientifically based understanding of the evolving hazard and risk. Seismic hazard assessment during complex sequences depends critically on up-to-date earthquake catalogues—i.e., data on locations, magnitudes, and activity of earthquakes—to characterize the ongoing seismicity and fuel earthquake forecasting models. Here we document six earthquake catalogues of this sequence that were developed using a variety of methods. The catalogues possess different levels of resolution and completeness resulting from progressive enhancements in the data availability, detection sensitivity, and hypocentral location accuracy. The catalogues range from real-time to advanced machine-learning procedures and highlight both the promises as well as the challenges of implementing advanced workflows in an operational environment. 
    more » « less
  3. A set of six large catalogues documenting the seismic sequence that occurred in central Italy between 2016 and 2017, characterized by a cascade of four MW5.5–6.5 events. The earthquake catalogues possess different levels of resolution and completeness that result from progressive enhancements in both detection sensitivity and hypocentral location determination. These quality differences reflect the subsequent application of advanced methods. 
    more » « less